Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Phytomedicine ; 109: 154551, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2182294

ABSTRACT

BACKGROUND: The significant clinical efficacy of Xuanfei Baidu Decoction (XFBD) is proven in the treatment of patients with coronavirus disease 2019 (COVID-19) in China. However, the mechanisms of XFBD against acute lung injury (ALI) are still poorly understood. METHODS: In vivo, the mouse model of ALI was induced by IgG immune complexes (IgG-IC), and then XFBD (4g/kg, 8g/kg) were administered by gavage respectively. 24 h after inducing ALI, the lungs were collected for histological and molecular analysis. In vitro, alveolar macrophages inflammation models induced by IgG-IC were performed and treated with different dosage of XFBD-containing serum to investigate the protective role and molecular mechanisms of XFBD. RESULTS: The results revealed that XFBD mitigated lung injury and significantly downregulated the production of pro-inflammatory mediators in lung tissues and macrophages upon IgG-IC stimulation. Notably, XFBD attenuated C3a and C5a generation, inhibited the expression of C3aR and C5aR and suppressed the activation of JAK2/STAT3/SOCS3 and NF-κB signaling pathway in lung tissues and macrophages induced by IgG-IC. Moreover, in vitro experiments, we verified that Colivelin TFA (CAF, STAT3 activator) and C5a treatment markedly elevated the IgG-IC-triggered inflammatory responses in macrophages and XFBD weakened the effects of CAF or C5a. CONCLUSION: XFBD suppressed complement overactivation and ameliorated IgG immune complex-induced acute lung injury by inhibiting JAK2/STAT3/SOCS3 and NF-κB signaling pathway. These data contribute to understanding the mechanisms of XFBD in COVID-19 treatment.


Subject(s)
Acute Lung Injury , COVID-19 , Animals , Humans , Mice , Acute Lung Injury/drug therapy , Acute Lung Injury/metabolism , Antigen-Antibody Complex/metabolism , COVID-19/pathology , COVID-19 Drug Treatment , Immunoglobulin G , Janus Kinase 2/metabolism , Lipopolysaccharides , Lung/pathology , NF-kappa B/metabolism , Signal Transduction , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/metabolism
2.
J Clin Immunol ; 42(8): 1766-1777, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-1990711

ABSTRACT

Haploinsufficiency of suppressor of cytokine signaling 1 (SOCS1) is a recently discovered autoinflammatory disorder with significant rheumatologic, immunologic, and hematologic manifestations. Here we report a case of SOCS1 haploinsufficiency in a 5-year-old child with profound arthralgias and immune-mediated thrombocytopenia unmasked by SARS-CoV-2 infection. Her clinical manifestations were accompanied by excessive B cell activity, eosinophilia, and elevated IgE levels. Uniquely, this is the first report of SOCS1 haploinsufficiency in the setting of a chromosomal deletion resulting in complete loss of a single SOCS1 gene with additional clinical findings of bone marrow hypocellularity and radiologic evidence of severe enthesitis. Immunologic profiling showed a prominent interferon signature in the patient's peripheral blood mononuclear cells, which were also hypersensitive to stimulation by type I and type II interferons. The patient showed excellent clinical and functional laboratory response to tofacitinib, a Janus kinase inhibitor that disrupts interferon signaling. Our case highlights the need to utilize a multidisciplinary diagnostic approach and consider a comprehensive genetic evaluation for inborn errors of immunity in patients with an atypical immune-mediated thrombocytopenia phenotype.


Subject(s)
COVID-19 , Myelodysplastic Syndromes , Thrombocytopenia , Female , Humans , Suppressor of Cytokine Signaling 1 Protein/genetics , Suppressor of Cytokine Signaling 1 Protein/metabolism , Haploinsufficiency , Leukocytes, Mononuclear/metabolism , Bone Marrow , SARS-CoV-2 , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism , Interferons/metabolism
3.
Rev Med Virol ; 32(3): e2300, 2022 05.
Article in English | MEDLINE | ID: covidwho-1427204

ABSTRACT

The family of Suppressor of Cytokine Signalling (SOCS) proteins plays pivotal roles in cytokine and immune regulation. Despite their key roles, little attention has been given to the SOCS family as compared to other feedback regulators. To date, SOCS proteins have been found to be exploited by viruses such as herpes simplex virus (HSV), hepatitis B virus (HBV), hepatitis C virus (HCV), Zika virus, respiratory syncytial virus (RSV), Ebola virus, influenza A virus (IAV) and SARS-CoV, just to name a few. The hijacking and subsequent upregulation of the SOCS proteins upon viral infection, suppress the associated JAK-STAT signalling activities, thereby reducing the host antiviral response and promoting viral replication. Two SOCS protein family members, SOCS1 and SOCS3 are well-studied and their roles in the JAK-STAT signalling pathway are defined as attenuating interferon (IFN) signalling upon viral infection. The upregulation of SOCS protein by SARS-CoV during the early stages of infection implies strong similarity with SARS-CoV-2, given their closely related genomic organisation. Thus, this review aims to outline the plausibility of SOCS protein inhibitors as a potential therapeutic regimen for COVID-19 patients. We also discuss the antagonists against SOCS protein to offer an overview on the previous 'successes' of SOCS protein inhibition in various viral infections that may portray possible clues for COVID-19 disease management.


Subject(s)
COVID-19 , Disease Progression , Suppressor of Cytokine Signaling Proteins , Cytokines/metabolism , Humans , SARS-CoV-2 , Suppressor of Cytokine Signaling 3 Protein/genetics , Suppressor of Cytokine Signaling 3 Protein/metabolism , Suppressor of Cytokine Signaling Proteins/genetics , Suppressor of Cytokine Signaling Proteins/metabolism
4.
Proc Jpn Acad Ser B Phys Biol Sci ; 97(6): 277-291, 2021.
Article in English | MEDLINE | ID: covidwho-1267427

ABSTRACT

Cytokines are important intercellular communication tools for immunity. Most cytokines utilize the JAK-STAT and Ras-ERK pathways to promote gene transcription and proliferation; however, this signaling is tightly regulated. The suppressor of cytokine signaling (SOCS) family and SPRED family are a representative negative regulators of the JAK-STAT pathway and the Ras-ERK pathway, respectively. The SOCS family regulates the differentiation and function of CD4+ T cells, CD8+ T cells, and regulatory T cells, and is involved in immune tolerance, anergy, and exhaustion. SPRED family proteins have been shown to inactivate Ras by recruiting the Ras-GTPase neurofibromatosis type 1 (NF1) protein. Human genetic analysis has shown that SOCS family members are strongly associated with autoimmune diseases, allergies, and tumorigenesis, and SPRED1 is involved in NF1-like syndromes and tumors. We also identified the NR4a family of nuclear receptors as a key transcription factor for immune tolerance that suppresses cytokine expression and induces various immuno-regulatory molecules including SOCS1.


Subject(s)
CD8-Positive T-Lymphocytes , Suppressor of Cytokine Signaling Proteins , CD8-Positive T-Lymphocytes/metabolism , Cytokines/metabolism , Humans , Immune Tolerance , Signal Transduction , Suppressor of Cytokine Signaling Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL